239 research outputs found

    Reconstruction of Images from Gabor Graphs with Applications in Facial Image Processing

    Get PDF
    Graphs labeled with complex-valued Gabor jets are one of the important data formats for face recognition and the classification of facial images into medically relevant classes like genetic syndromes. We here present an interpolation rule and an iterative algorithm for the reconstruction of images from these graphs. This is especially important if graphs have been manipulated for information processing. One such manipulation is averaging the graphs of a single syndrome, another one building a composite face from the features of various individuals. In reconstructions of averaged graphs of genetic syndromes, the patients' identities are suppressed, while the properties of the syndromes are emphasized. These reconstructions from average graphs have a much better quality than averaged images

    Liquid Biopsies

    Full text link

    Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene

    Get PDF
    Background: Intellectual disability (ID) is often associated with behavioral problems or disorders. Mutations in the GRIN2B gene (MRD6, MIM613970) have been identified as a common cause of ID (prevalence of 0.5 – 1% in individuals with ID) associated with EEG and behavioral problems. Methods: We assessed five GRIN2B mutation carriers aged between 3 and 14 years clinically and via standardized questionnaires to delineate a detailed behavioral phenotype. Parents and teachers rated problem behavior of their affected children by completing the Developmental Behavior Checklist (DBC) and the Conners’ Rating Scales Revised (CRS-R:L). Results: All individuals had mild to severe ID and needed guidance in daily routine. They showed characteristic behavior problems with prominent hyperactivity, impulsivity, distractibility and a short attention span. Stereotypies, sleeping problems and a friendly but boundless social behavior were commonly reported. Conclusion: Our observations provide an initial delineation of the behavioral phenotype of GRIN2B mutation carriers

    Diversity and activity of sugar transporters in nematode-induced root syncytia

    Get PDF
    The plant-parasitic nematode Heterodera schachtii stimulates plant root cells to form syncytial feeding structures which synthesize all nutrients required for successful nematode development. Cellular re-arrangements and modified metabolism of the syncytia are accompanied by massive intra- and intercellular solute allocations. In this study the expression of all genes annotated as sugar transporters in the Arabidopsis Membrane Protein Library was investigated by Affymetrix gene chip analysis in young and fully developed syncytia compared with non-infected Arabidopsis thaliana roots. The expression of three highly up-regulated (STP12, MEX1, and GTP2) and three highly down-regulated genes (SFP1, STP7, and STP4) was analysed by quantitative RT-PCR (qRT-PCR). The most up-regulated gene (STP12) was chosen for further in-depth studies using in situ RT-PCR and a nematode development assay with a T-DNA insertion line revealing a significant reduction of male nematode development. The specific role of STP12 expression in syncytia of male juveniles compared with those of female juveniles was further shown by qRT-PCR. In order to provide evidence for sugar transporter activity across the plasma membrane of syncytia, fluorescence-labelled glucose was used and membrane potential recordings following the application of several sugars were performed. Analyses of soluble sugar pools revealed a highly specific composition in syncytia. The presented work demonstrates that sugar transporters are specifically expressed and active in syncytia, indicating a profound role in inter- and intracelluar transport processes

    Neurological manifestations in children and adolescents with neurofibromatosis type-1-implications for management and surveillance [Abstract]

    Get PDF
    INTRODUCTION: We aimed to (1) characterize the spectrum of clinical phenotypes of NF1 in a random pediatric population, (2) correlate genotype with phenotypic expression for those with a genetic diagnosis, and (3) explore radiological features of NF1 in the central nervous system (CNS) by radiomics analyses to predict clinical course. METHODS: We performed a database search in the hospital information system of the University Children′s Hospital between January 2017 and December 2020 for patients with NF1 and evaluated the clinical phenotype by retrospective chart review. RESULTS: 75 children/adolescents were identified with suspicion/clinical diagnosis of NF1 (median age 10.0 years (range, 1.1-22.6); 35 female), confirmatory revised “diagnostic criteria” were met in 57 patients at the last follow-up. Per number of documented items, major signs were detected as 73/75 café-au-lait macules, 31/63 freckling, 38/71 neurofibromas (thereof 21 plexiform neurofibromas), 18/43 optic pathway glioma, 5/66 Lisch nodules, and two patients with sphenoid dysplasia. Genetic analysis (31/75) identified pathogenic NF1 variants in 27 patients. In 20/66 cases a parent met diagnostic criteria. Cognitive symptoms included developmental delay (28/68), learning deficits (12/48), attention-deficit hyperactivity disorder (3/53), and behavior anomalies (7/63). Classical unidentified bright objects were seen in 29/43, other intracranial tumors in 7/43, and cerebrovascular abnormalities in 5/43. Analysis of imaging features of the CNS in these patients will involve lesion segmentation and radiomics features. Symptomatic/progressive low-grade glioma necessitated neurosurgical resection (4/25) and/or chemotherapy (12/25). In 10/25 neuropsychological functions were assessed by the German neuropsychological basic diagnostic instrument. Until June 30th, 2021, one patient died of progressive plexiform neurofibroma. CONCLUSIONS: A wide range of neurological manifestations, including neuropsychological deficits, should raise the suspicion of NF1 in an unselected pediatric population. We expect imaging features of the CNS to better predict the clinical course and enhance decision-making

    ARTICLE Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications

    Get PDF
    PPFIBP1 encodes for the liprin-β1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications

    Mutations in NSUN2 Cause Autosomal- Recessive Intellectual Disability

    Get PDF
    With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227∗] and c.1114C>T [p.Gln372∗], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs∗192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development

    Oto-facial syndrome and esophageal atresia, intellectual disability and zygomatic anomalies: expanding the phenotypes associated with EFTUD2 mutations

    Get PDF
    Background: Mutations in EFTUD2 were proven to cause a very distinct mandibulofacial dysostosis type Guion-Almeida (MFDGA, OMIM #610536). Recently, gross deletions and mutations in EFTUD2 were determined to cause syndromic esophageal atresia (EA), as well. We set forth to find further conditions caused by mutations in the EFTUD2 gene (OMIM *603892). Methods and results: We performed exome sequencing in two familial cases with clinical features overlapping with MFDGA and EA, but which were previously assumed to represent distinct entities, a syndrome with esophageal atresia, hypoplasia of zygomatic complex, microcephaly, cup-shaped ears, congenital heart defect, and intellectual disability in a mother and her two children [AJMG 143A(11):1135-1142, 2007] and a supposedly autosomal recessive oto-facial syndrome with midline malformations in two sisters [AJMG 132(4):398-401, 2005]. While the analysis of our exome data was in progress, a recent publication made EFTUD2 mutations highly likely in these families. This hypothesis could be confirmed with exome as well as with Sanger sequencing. Also, in three further sporadic patients, clinically overlapping to these two families, de novo mutations within EFTUD2 were identified by Sanger sequencing. Our clinical and molecular workup of the patients discloses a broad phenotypic spectrum, and describes for the first time an instance of germline mosaicism for an EFTUD2 mutation. Conclusions: The clinical features of the eight patients described here further broaden the phenotypic spectrum caused by EFTUD2 mutations or deletions. We here show, that it not only includes mandibulofacial dysostosis type Guion-Almeida, which should be reclassified as an acrofacial dysostosis because of thumb anomalies (present in 12/35 or 34% of patients) and syndromic esophageal atresia [JMG 49(12). 737-746, 2012], but also the two new syndromes, namely oto-facial syndrome with midline malformations published by Megarbane et al. [AJMG 132(4): 398-401, 2005] and the syndrome published by Wieczorek et al. [AJMG 143A(11):1135-1142, 2007] The finding of mild phenotypic features in the mother of one family that could have been overlooked and the possibility of germline mosaicism in apparently healthy parents in the other family should be taken into account when counseling such families
    corecore